19.6. 実装例(GPU)

GPGPU実装は、CPU実装と基本的には同じものです。異なる点はデータ並列化が可能なコードは、カーネル関数内に移されます。

ここで使うカーネル関数は3つあります。まず一つ目が、fft_init関数です。

__kernel void fft_init(
                __global float2* data,
                __global float2* F,
                int N)

この関数は、Radix-2 FFTの導入部分となり、ストライドが1の時に使います。つまりCPU実装でいう以下の行に該当します。

F[offset] = data[offset] + data[offset + N2]
F[offset + 1] = data[offset + 1] + data[offset + N2 + 1]
F[offset + N2] = data[offset] - data[offset + N2]
F[offset + N2 + 1] = data[offset + 1] - data[offset + N2 + 1]

この計算では三角関数が不要となります。またdata変数は生データですが、以後の計算では、F変数を用います。

Radix-2 FFTのGPU実装の該当するFFTカーネル関数は以下のようになります。CPU実装例と比べると、ほとんど同じコードであることがわかると思います。

float2 in0, in1;

in0 = F[index];
in1 = F[index+stride];

float angle = -2*M_PI_F*(index)/N;

float c,s;
float2 v;
float2 tmp0;

c = native_cos(angle);
s = sign*native_sin(angle);

v.x = c * (in1.x) - s * in1.y;
v.y = c * (in1.y) + s * in1.x;

tmp0 = in0;

in0 = tmp0 + v;
in1 = tmp0 - v;

F[index] = in0;
F[index + stride] = in1;

OpenCLではfloat2型を使うことにより、xに実数部、yに虚数部とすることで、コード行数を少なくとも半分程度に抑制できます。

FFTのメインのアルゴリズムは以下のfftカーネル関数を使います。

__kernel void fft(
                __global float2* F,
                int N,
                int sign)

この関数はCooley-Tukeyアルゴリズムを実装しますが、該当するCPU実装は以下のようになります。

forward(N2, offset, data, F, sign, step)
forward(N2, offset + N2, data, F, sign, step)

for i in range(0, N2, 2):
    c = np.cos(i * _PI / N2)
    s = sign * np.sin(i * _PI / N2)
    real = F[i + N2 + offset] * c + F[i + N2 + 1 + offset] * s
    imaginary = F[i + N2 + 1 + offset] * c - F[i + N2 + offset] * s

    F[i + N2 + offset] = F[i + offset] - real
    F[i + N2 + 1 + offset] = F[i + 1 + offset] - imaginary
    F[i + offset] += real
    F[i + 1 + offset] += imaginary

ここでは、forward関数は、fft関数に該当し、最初の2行で再帰処理をしています。

GPU実装については、再帰処理ができないため、再帰部分はOpenCLホストAPIを使い、残りは記述をカーネル関数に移します。構成としては以下のようになります。

int fftSize = 1;
int ns = log2(N);
int stages = 0;
int[] fftSizePtr = new int[1];
for(int i = 0; i < ns; i++) {
    fftSize <<= 1;
    fftSizePtr[0] = fftSize;

    if(fftSize !=2) {
        // fftカーネル関数
    } else {
        // fft_initカーネル関数
    }
}

fft_initは、forループ内の反復の一番初めだけ実行され、残りはfftカーネル関数が代わりに実行されます。

FFTGPU1D.py. 

import pyopencl as cl
import numpy as np
from numpy.random import *

KERNEL_INIT = "fft_init"
KERNEL_BIT_REVERSAL = "bit_reversal"
KERNEL_FFT = "fft"
KERNEL_FFT_INVERSE = "fft_inverse"
DATA_SIZE = 32

data = randint(0, 20, DATA_SIZE << 1).astype(np.float32)
processed_data = np.zeros(DATA_SIZE << 1).astype(np.float32)

print(data)

global_work_size = (DATA_SIZE >> 1, 1, 1)
local_work_size = (1, 1, 1)

global_work_size_full = (DATA_SIZE, 1, 1)

devices = [cl.get_platforms()[0].get_devices(cl.device_type.GPU)[0]]

ctx = cl.Context(devices)
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
data_mem = cl.Buffer(ctx, mf.USE_HOST_PTR, hostbuf=data)

opt_string = "-Dsize="+str(DATA_SIZE)
options = [opt_string]

program = cl.Program(ctx, """
    inline int reverseBit(int x, int stage) {
        int b = 0;
        int bits = stage;
        while (bits != 0){
              b <<=1;
              b |=( x &1 );
              x >>=1;
              bits>>=1;
        }
        return b;
    }

    __kernel void bit_reversal(__global float2* data, uint N) {
        size_t gid = get_global_id(0);
        uint rev = reverseBit(gid, N-1);
        float2 in1;
        float2 in2;
        if(gid < rev) {
            in1 = data[gid];
            in2 = data[rev];
            printf("pair: %d - %d, N = %d\\n", gid, rev, N);
            data[rev] = in1;
            data[gid] = in2;
        }
    }

    __kernel void fft_init(
            __global float2* data,
            __global float2* F,
            int N)
    {
        int gid = get_global_id(0);
        int stride = N/2;
        float floor_adjust = gid/stride;
        int index = ceil(floor_adjust)*stride + (gid);

        float2 in0, in1;

        in0 = data[index];
        in1 = data[index+stride];

        float2 v0;
        v0 = in0;
        in0 = v0 + in1;
        in1 = v0 - in1;

        F[index] = in0;
        F[index + stride] = in1;

        printf("gid=%d, pair: %d - %d, N = %d, s = %d, in0:in1 = %f:%f\\n", gid, index, index+stride, N, stride, F[index].x, F[index+stride].x);

    }

    __kernel void fft(
            __global float2* F,
            int N,
            int sign)
    {
        int gid = get_global_id(0);
        int stride = N/2;
        float floor_adjust = gid/stride;
        int index = ceil(floor_adjust)*stride + (gid);

        float2 in0, in1;

        in0 = F[index];
        in1 = F[index+stride];

        float angle = -2*M_PI_F*(index)/N;

        float c,s;
        float2 v;
        float2 tmp0;

        c = native_cos(angle);
        s = sign*native_sin(angle);

        v.x = c * (in1.x) - s * in1.y;
        v.y = c * (in1.y) + s * in1.x;

        tmp0 = in0;

        in0 = tmp0 + v;
        in1 = tmp0 - v;

        F[index] = in0;
        F[index + stride] = in1;

        printf("gid=%d, pair: %d - %d, N = %d, s = %d, sign = %d c:s = %f:%f\\n in0:in1 = %f:%f\\n", gid, index, index+stride, N, stride, sign, c, s, F[index].x, F[index+stride].x);

    }

    __kernel void fft_inverse(
        int N,
        __global float2* F)
    {
        size_t gid = get_global_id(0);
        F[gid] /= N;
    }


""").build()


mf = cl.mem_flags

data_mem = cl.Buffer(ctx, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=data)
processed_mem = cl.Buffer(ctx, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=processed_data)

kernel_init = cl.Kernel(program, name=KERNEL_INIT)
kernel_bit_reversal = cl.Kernel(program, name=KERNEL_BIT_REVERSAL)
kernel_fft = cl.Kernel(program, name=KERNEL_FFT)
kernel_fft_inverse = cl.Kernel(program, name=KERNEL_FFT_INVERSE)

N = DATA_SIZE
fftSize = 1
ns = np.uint32(np.log2(N))

kernel_bit_reversal.set_arg(0, data_mem)
kernel_bit_reversal.set_arg(1, np.uint32(N))

cl.enqueue_nd_range_kernel(queue, kernel_bit_reversal, global_work_size_full, local_work_size)

sign = 1

for i in range(ns):
    fftSize <<= 1
    if fftSize != 2:
        kernel_fft.set_arg(0, processed_mem)
        kernel_fft.set_arg(1, np.int32(fftSize))
        kernel_fft.set_arg(2, np.int32(sign))

        cl.enqueue_nd_range_kernel(queue, kernel_fft, global_work_size, local_work_size)
    else:
        kernel_init.set_arg(0, data_mem)
        kernel_init.set_arg(1, processed_mem)
        kernel_init.set_arg(2, np.int32(fftSize))

        cl.enqueue_nd_range_kernel(queue, kernel_init, global_work_size, local_work_size)


kernel_bit_reversal.set_arg(0, processed_mem)
kernel_bit_reversal.set_arg(1, np.int32(N))

cl.enqueue_nd_range_kernel(queue, kernel_bit_reversal, global_work_size_full, local_work_size)

sign = -1
fftSize = 1


for i in range(ns):
    fftSize <<= 1

    kernel_fft.set_arg(0, processed_mem)
    kernel_fft.set_arg(1, np.int32(fftSize))
    kernel_fft.set_arg(2, np.int32(sign))

    cl.enqueue_nd_range_kernel(queue, kernel_fft, global_work_size, local_work_size)


kernel_fft_inverse.set_arg(0, np.int32(N))
kernel_fft_inverse.set_arg(1, processed_mem)

cl.enqueue_nd_range_kernel(queue, kernel_fft_inverse, global_work_size_full, local_work_size)

out = np.zeros(DATA_SIZE).astype(np.float32)

cl.enqueue_read_buffer(queue, mem=processed_mem, hostbuf=out)

print(out)

下記はFFTカーネル関数が出力したFFTの処理情報となります。処理点の数はN、処理点間の距離はs、pairが実行中の2つの処理点(in0、in1)、gidがグローバルIDとなっています。cはcos関数、sはsin関数の値です。

gid=2, pair: 4 - 5, N = 2, s = 1, in0:in1 = 6.000000:-4.000000
gid=0, pair: 0 - 1, N = 2, s = 1, in0:in1 = 4.000000:-4.000000
gid=3, pair: 6 - 7, N = 2, s = 1, in0:in1 = 10.000000:-4.000000
gid=1, pair: 2 - 3, N = 2, s = 1, in0:in1 = 8.000000:-4.000000
gid=2, pair: 4 - 6, N = 4, s = 2, sign = 1 c:s = 1.000000:-0.000000
 in0:in1 = 16.000000:-4.000000
gid=0, pair: 0 - 2, N = 4, s = 2, sign = 1 c:s = 1.000000:-0.000000
 in0:in1 = 12.000000:-4.000000
gid=3, pair: 5 - 7, N = 4, s = 2, sign = 1 c:s = -0.000000:-1.000000
 in0:in1 = -3.999999:-4.000001
gid=1, pair: 1 - 3, N = 4, s = 2, sign = 1 c:s = -0.000000:-1.000000
 in0:in1 = -4.000000:-4.000000
gid=2, pair: 2 - 6, N = 8, s = 4, sign = 1 c:s = -0.000000:-1.000000
 in0:in1 = -3.999999:-4.000001
gid=0, pair: 0 - 4, N = 8, s = 4, sign = 1 c:s = 1.000000:-0.000000
 in0:in1 = 28.000000:-4.000000
gid=3, pair: 3 - 7, N = 8, s = 4, sign = 1 c:s = -0.707110:-0.707110
 in0:in1 = -3.999999:-4.000001
gid=1, pair: 1 - 5, N = 8, s = 4, sign = 1 c:s = 0.707110:-0.707110
 in0:in1 = -3.999999:-4.000001

下記は上に同じく処理情報ですが、今度は逆(inverse)FFTの情報を採集しています。sign変数が「-1」となっていることに注目ください。

gid=0, pair: 0 - 1, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000
 in0:in1 = 24.000000:32.000000
gid=2, pair: 4 - 5, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000
 in0:in1 = -8.000000:0.000001
gid=3, pair: 6 - 7, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000
 in0:in1 = -8.000000:0.000002
gid=1, pair: 2 - 3, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000
 in0:in1 = -8.000000:0.000002
gid=2, pair: 4 - 6, N = 4, s = 2, sign = -1 c:s = 1.000000:0.000000
 in0:in1 = -15.999999:-0.000001
gid=0, pair: 0 - 2, N = 4, s = 2, sign = -1 c:s = 1.000000:0.000000
 in0:in1 = 16.000000:32.000000
gid=3, pair: 5 - 7, N = 4, s = 2, sign = -1 c:s = -0.000000:1.000000
 in0:in1 = -11.313758:11.313760
gid=1, pair: 1 - 3, N = 4, s = 2, sign = -1 c:s = -0.000000:1.000000
 in0:in1 = 24.000000:40.000000
gid=2, pair: 2 - 6, N = 8, s = 4, sign = -1 c:s = -0.000000:1.000000
 in0:in1 = 16.000000:48.000000
gid=0, pair: 0 - 4, N = 8, s = 4, sign = -1 c:s = 1.000000:0.000000
 in0:in1 = 0.000001:32.000000
gid=3, pair: 3 - 7, N = 8, s = 4, sign = -1 c:s = -0.707110:0.707110
 in0:in1 = 23.999861:56.000137
gid=1, pair: 1 - 5, N = 8, s = 4, sign = -1 c:s = 0.707110:0.707110
 in0:in1 = 7.999863:40.000137

プログラムが処理を終えた結果は以下のようになります。

1.1920929E-7
-3.5762787E-7
0.99998283
-2.526322E-7
2.0
-5.9604645E-8
2.9999826
-4.7709625E-7
4.0
2.3841858E-7
5.000017
1.9301845E-7
6.0
1.7881393E-7
7.000017
-6.554011E-7

元のデータがほとんど完全な形で復元に成功しています。

Copyright 2018-2019, by Masaki Komatsu