GPGPU実装は、CPU実装と基本的には同じものです。異なる点はデータ並列化が可能なコードは、カーネル関数内に移されます。
ここで使うカーネル関数は3つあります。まず一つ目が、fft_init関数です。
__kernel void fft_init(
__global float2* data,
__global float2* F,
int N)この関数は、Radix-2 FFTの導入部分となり、ストライドが1の時に使います。つまりCPU実装でいう以下の行に該当します。
F[offset] = data[offset] + data[offset+N2]; F[offset+1] = data[offset+1] + data[offset+N2+1]; F[offset+N2] = data[offset] - data[offset+N2]; F[offset+N2+1] = data[offset+1] - data[offset+N2+1];
この計算では三角関数が不要となります。またdata変数は生データですが、以後の計算では、F変数を用います。
Radix-2 FFTのGPU実装の該当するFFTカーネル関数は以下のようになります。CPU実装例と比べると、ほとんど同じコードであることがわかると思います。
float2 in0, in1; in0 = F[index]; in1 = F[index+stride]; float angle = -2*M_PI_F*(index)/N; float c,s; float2 v; float2 tmp0; c = native_cos(angle); s = sign*native_sin(angle); v.x = c * (in1.x) - s * in1.y; v.y = c * (in1.y) + s * in1.x; tmp0 = in0; in0 = tmp0 + v; in1 = tmp0 - v; F[index] = in0; F[index + stride] = in1;
Javaの標準パッケージでは、ベクトル型を使用できませんが、OpenCLではfloat2型を使うことにより、xに実数部、yに虚数部とすることで、コード行数を少なくとも半分程度に抑制できます。
FFTのメインのアルゴリズムは以下のfftカーネル関数を使います。
__kernel void fft(
__global float2* F,
int N,
int sign)この関数はCooley-Tukeyアルゴリズムを実装しますが、該当するCPU実装は以下のようになります。
forward(N2,offset,data,F,sign,step);
forward(N2,offset+N2,data,F,sign,step);
for(int i = 0; i < N2; i+=2) {
c = Math.cos(i*_PI/N2); // (_PI * 2 * k)
s = sign*Math.sin(i*_PI/N2); // (_PI * 2 * k)
real = F[i+N2+offset]*c + F[i+N2+1+offset]*s;
imaginary = F[i+N2+1+offset]*c - F[i+N2+offset]*s;
F[i+N2+offset] = F[i+offset] - real;
F[i+N2+1+offset] = F[i+1+offset] - imaginary;
F[i+offset] += real;
F[i+1+offset] += imaginary;
}ここでは、forward関数は、fft関数に該当し、最初の2行で再帰処理をしています。
GPU実装については、再帰処理ができないため、再帰部分はOpenCLホストAPIを使い、残りは記述をカーネル関数に移します。構成としては以下のようになります。
int fftSize = 1;
int ns = log2(N);
int stages = 0;
int[] fftSizePtr = new int[1];
for(int i = 0; i < ns; i++) {
fftSize <<= 1;
fftSizePtr[0] = fftSize;
if(fftSize !=2) {
// fftカーネル関数
} else {
// fft_initカーネル関数
}
}fft_initは、forループ内の反復の一番初めだけ実行され、残りはfftカーネル関数が代わりに実行されます。
FFTGPU1D.java.
package com.book.jocl.fft;
import static org.jocl.CL.*;
import java.io.File;
import java.net.URL;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.file.Paths;
import java.util.Scanner;
import org.jocl.CL;
import org.jocl.Pointer;
import org.jocl.Sizeof;
import org.jocl.cl_command_queue;
import org.jocl.cl_context;
import org.jocl.cl_context_properties;
import org.jocl.cl_device_id;
import org.jocl.cl_kernel;
import org.jocl.cl_mem;
import org.jocl.cl_platform_id;
import org.jocl.cl_program;
public class FFTGPU1D {
private static final String KERNEL_PATH = "fft1d.cl";
private static final String KERNEL_INIT = "fft_init";
private static final String KERNEL_BIT_REVERSAL = "bit_reversal";
private static final String KERNEL_FFT = "fft";
private static final String KERNEL_FFT_INVERSE = "fft_inverse";
private static cl_context context;
private static cl_command_queue queue;
private static cl_program program;
private static cl_kernel kernel_init;
private static cl_kernel kernel_bit_reversal;
private static cl_kernel kernel_fft;
private static cl_kernel kernel_fft_inverse;
private static final int DATA_SIZE = 256;
private static final float[] data = new float[DATA_SIZE<<1];
private static final float[] processed_data = new float[DATA_SIZE << 1];
private static long[] global_work_size = new long[]{DATA_SIZE >>> 1,1,1};
private static long[] local_work_size = new long[]{1,1,1};
private static long[] global_work_size_full = new long[]{DATA_SIZE,1,1};
private static int log2(int b) {
int result = 0;
if((b & 0xffff0000) != 0) {
b >>>= 16;
result = 16;
}
if(b >= 256) {
b >>>= 8;
result += 8;
}
if(b >= 16) {
b >>>= 4;
result += 4;
}
if(b >= 4) {
b >>>= 2;
result += 2;
}
return result + (b >>> 1);
}
public static void main(String[] args) throws Exception {
CL.setExceptionsEnabled(true);
cl_platform_id[] platform = new cl_platform_id[1];
cl_device_id[] device = new cl_device_id[1];
int[] num_devices = new int[1];
clGetPlatformIDs(1, platform, null);
clGetDeviceIDs(platform[0], CL_DEVICE_TYPE_GPU, 1, device, num_devices);
cl_context_properties props = new cl_context_properties();
props.addProperty(CL_CONTEXT_PLATFORM, platform[0]);
context = clCreateContext(props, 1, device, null, null, null);
queue = clCreateCommandQueue(context, device[0], 0, null);
StringBuffer sb = new StringBuffer();
URL resource = FFTGPU1D.class.getResource(KERNEL_PATH) ;
String path = Paths.get(resource.toURI()).toFile().getAbsolutePath();
Scanner sc = new Scanner(new File(path));
while(sc.hasNext()) {
sb.append(sc.nextLine() + "\n");
}
sc.close();
program = clCreateProgramWithSource(context, 1, new String[] {sb.toString()}, null, null);
String option = "-Werror";
clBuildProgram(program, 0, null, option, null, null);
cl_mem data_mem = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
Sizeof.cl_float2 * DATA_SIZE, Pointer.to(data), null);
cl_mem processed_mem = clCreateBuffer(context, CL_MEM_USE_HOST_PTR,
Sizeof.cl_float2 * DATA_SIZE, Pointer.to(processed_data), null);
kernel_init = clCreateKernel(program, KERNEL_INIT, null);
kernel_bit_reversal = clCreateKernel(program, KERNEL_BIT_REVERSAL, null);
kernel_fft = clCreateKernel(program, KERNEL_FFT, null);
kernel_fft_inverse = clCreateKernel(program, KERNEL_FFT_INVERSE, null);
generateSample();
int N = DATA_SIZE;
int fftSize = 1;
int ns = log2(N);
int stages = 0;
int[] fftSizePtr = new int[1];
int[] Ni = new int[1];
Ni[0] = N;
clSetKernelArg(kernel_bit_reversal, 0, Sizeof.cl_mem, Pointer.to(data_mem));
clSetKernelArg(kernel_bit_reversal, 1, Sizeof.cl_uint, Pointer.to(Ni));
clEnqueueNDRangeKernel(queue,
kernel_bit_reversal, 1, null,
global_work_size_full,
local_work_size,
0, null, null);
int[] signPtr = new int[1];
signPtr[0] = 1;
for(int i = 0; i < ns; i++) {
fftSize <<= 1;
fftSizePtr[0] = fftSize;
if(fftSize !=2) {
clSetKernelArg(kernel_fft, 0, Sizeof.cl_mem, Pointer.to(processed_mem));
clSetKernelArg(kernel_fft, 1, Sizeof.cl_uint, Pointer.to(fftSizePtr));
clSetKernelArg(kernel_fft, 2, Sizeof.cl_int, Pointer.to(signPtr));
clEnqueueNDRangeKernel(queue,
kernel_fft, 1, null,
global_work_size,
local_work_size,
0, null, null);
} else {
clSetKernelArg(kernel_init, 0, Sizeof.cl_mem, Pointer.to(data_mem));
clSetKernelArg(kernel_init, 1, Sizeof.cl_mem, Pointer.to(processed_mem));
clSetKernelArg(kernel_init, 2, Sizeof.cl_uint, Pointer.to(fftSizePtr));
clEnqueueNDRangeKernel(queue,
kernel_init, 1, null,
global_work_size,
local_work_size,
0, null, null);
}
stages++;
}
clSetKernelArg(kernel_bit_reversal, 0, Sizeof.cl_mem, Pointer.to(processed_mem));
clSetKernelArg(kernel_bit_reversal, 1, Sizeof.cl_uint, Pointer.to(Ni));
clEnqueueNDRangeKernel(queue,
kernel_bit_reversal, 1, null,
global_work_size_full,
local_work_size,
0, null, null);
signPtr[0] = -1;
fftSize = 1;
stages = 0;
for(int i = 0; i < ns; i++) {
fftSize <<= 1;
fftSizePtr[0] = fftSize;
clSetKernelArg(kernel_fft, 0, Sizeof.cl_mem, Pointer.to(processed_mem));
clSetKernelArg(kernel_fft, 1, Sizeof.cl_uint, Pointer.to(fftSizePtr));
clSetKernelArg(kernel_fft, 2, Sizeof.cl_int, Pointer.to(signPtr));
clEnqueueNDRangeKernel(queue,
kernel_fft, 1, null,
global_work_size,
local_work_size,
0, null, null);
stages++;
}
clSetKernelArg(kernel_fft_inverse, 0, Sizeof.cl_uint, Pointer.to(Ni));
clSetKernelArg(kernel_fft_inverse, 1, Sizeof.cl_mem, Pointer.to(processed_mem));
long[] global_work_size_scale = new long[]{DATA_SIZE,1,1};
long[] local_work_size_scale = new long[]{1,1,1};
clEnqueueNDRangeKernel(queue,
kernel_fft_inverse, 1, null,
global_work_size_scale,
local_work_size_scale,
0, null, null);
ByteBuffer output = clEnqueueMapBuffer(queue,
processed_mem,
CL_TRUE,
CL_MAP_WRITE,
0,
Sizeof.cl_float2*DATA_SIZE,
0,
null,
null,
null);
clEnqueueUnmapMemObject(queue, processed_mem, output, 0, null, null);
clFinish(queue);
output.order(ByteOrder.LITTLE_ENDIAN);
for(int i = 0; i < DATA_SIZE*2; i++) {
System.out.println(output.getFloat());
}
clReleaseDevice(device[0]);
clReleaseContext(context);
clReleaseCommandQueue(queue);
clReleaseKernel(kernel_fft);
clReleaseKernel(kernel_init);
clReleaseProgram(program);
}
private static void generateSample() {
for(int i = 0; i < DATA_SIZE*2; i+=2) {
data[i] = i/2;
data[i+1] = 0.0f;
}
}
}
fft1d.cl.
inline int reverseBit(int x, int stage) {
int b = 0;
int bits = stage;
while (bits != 0){
b <<=1;
b |=( x &1 );
x >>=1;
bits>>=1;
}
return b;
}
__kernel void bit_reversal(__global float2* data, uint N) {
size_t gid = get_global_id(0);
uint rev = reverseBit(gid, N-1);
float2 in1;
float2 in2;
if(gid < rev) {
in1 = data[gid];
in2 = data[rev];
printf("pair: %d - %d, N = %d\n", gid, rev, N);
data[rev] = in1;
data[gid] = in2;
}
}
__kernel void fft_init(
__global float2* data,
__global float2* F,
int N)
{
int gid = get_global_id(0);
int stride = N/2;
float floor_adjust = gid/stride;
int index = ceil(floor_adjust)*stride + (gid);
float2 in0, in1;
in0 = data[index];
in1 = data[index+stride];
float2 v0;
v0 = in0;
in0 = v0 + in1;
in1 = v0 - in1;
F[index] = in0;
F[index + stride] = in1;
printf("gid=%d, pair: %d - %d, N = %d, s = %d, in0:in1 = %f:%f\n", gid, index, index+stride, N, stride, F[index].x, F[index+stride].x);
}
__kernel void fft(
__global float2* F,
int N,
int sign)
{
int gid = get_global_id(0);
int stride = N/2;
float floor_adjust = gid/stride;
int index = ceil(floor_adjust)*stride + (gid);
float2 in0, in1;
in0 = F[index];
in1 = F[index+stride];
float angle = -2*M_PI_F*(index)/N;
float c,s;
float2 v;
float2 tmp0;
c = native_cos(angle);
s = sign*native_sin(angle);
v.x = c * (in1.x) - s * in1.y;
v.y = c * (in1.y) + s * in1.x;
tmp0 = in0;
in0 = tmp0 + v;
in1 = tmp0 - v;
F[index] = in0;
F[index + stride] = in1;
printf("gid=%d, pair: %d - %d, N = %d, s = %d, sign = %d c:s = %f:%f\n in0:in1 = %f:%f\n", gid, index, index+stride, N, stride, sign, c, s, F[index].x, F[index+stride].x);
}
__kernel void fft_inverse(
int N,
__global float2* F)
{
size_t gid = get_global_id(0);
F[gid] /= N;
}
下記はFFTカーネル関数が出力したFFTの処理情報となります。処理点の数はN、処理点間の距離はs、pairが実行中の2つの処理点(in0、in1)、gidがグローバルIDとなっています。cはcos関数、sはsin関数の値です。
gid=2, pair: 4 - 5, N = 2, s = 1, in0:in1 = 6.000000:-4.000000 gid=0, pair: 0 - 1, N = 2, s = 1, in0:in1 = 4.000000:-4.000000 gid=3, pair: 6 - 7, N = 2, s = 1, in0:in1 = 10.000000:-4.000000 gid=1, pair: 2 - 3, N = 2, s = 1, in0:in1 = 8.000000:-4.000000 gid=2, pair: 4 - 6, N = 4, s = 2, sign = 1 c:s = 1.000000:-0.000000 in0:in1 = 16.000000:-4.000000 gid=0, pair: 0 - 2, N = 4, s = 2, sign = 1 c:s = 1.000000:-0.000000 in0:in1 = 12.000000:-4.000000 gid=3, pair: 5 - 7, N = 4, s = 2, sign = 1 c:s = -0.000000:-1.000000 in0:in1 = -3.999999:-4.000001 gid=1, pair: 1 - 3, N = 4, s = 2, sign = 1 c:s = -0.000000:-1.000000 in0:in1 = -4.000000:-4.000000 gid=2, pair: 2 - 6, N = 8, s = 4, sign = 1 c:s = -0.000000:-1.000000 in0:in1 = -3.999999:-4.000001 gid=0, pair: 0 - 4, N = 8, s = 4, sign = 1 c:s = 1.000000:-0.000000 in0:in1 = 28.000000:-4.000000 gid=3, pair: 3 - 7, N = 8, s = 4, sign = 1 c:s = -0.707110:-0.707110 in0:in1 = -3.999999:-4.000001 gid=1, pair: 1 - 5, N = 8, s = 4, sign = 1 c:s = 0.707110:-0.707110 in0:in1 = -3.999999:-4.000001
下記は上に同じく処理情報ですが、今度は逆(inverse)FFTの情報を採集しています。sign変数が「-1」となっていることに注目ください。
gid=0, pair: 0 - 1, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000 in0:in1 = 24.000000:32.000000 gid=2, pair: 4 - 5, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000 in0:in1 = -8.000000:0.000001 gid=3, pair: 6 - 7, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000 in0:in1 = -8.000000:0.000002 gid=1, pair: 2 - 3, N = 2, s = 1, sign = -1 c:s = 1.000000:0.000000 in0:in1 = -8.000000:0.000002 gid=2, pair: 4 - 6, N = 4, s = 2, sign = -1 c:s = 1.000000:0.000000 in0:in1 = -15.999999:-0.000001 gid=0, pair: 0 - 2, N = 4, s = 2, sign = -1 c:s = 1.000000:0.000000 in0:in1 = 16.000000:32.000000 gid=3, pair: 5 - 7, N = 4, s = 2, sign = -1 c:s = -0.000000:1.000000 in0:in1 = -11.313758:11.313760 gid=1, pair: 1 - 3, N = 4, s = 2, sign = -1 c:s = -0.000000:1.000000 in0:in1 = 24.000000:40.000000 gid=2, pair: 2 - 6, N = 8, s = 4, sign = -1 c:s = -0.000000:1.000000 in0:in1 = 16.000000:48.000000 gid=0, pair: 0 - 4, N = 8, s = 4, sign = -1 c:s = 1.000000:0.000000 in0:in1 = 0.000001:32.000000 gid=3, pair: 3 - 7, N = 8, s = 4, sign = -1 c:s = -0.707110:0.707110 in0:in1 = 23.999861:56.000137 gid=1, pair: 1 - 5, N = 8, s = 4, sign = -1 c:s = 0.707110:0.707110 in0:in1 = 7.999863:40.000137
プログラムが処理を終えた結果は以下のようになります。
1.1920929E-7 -3.5762787E-7 0.99998283 -2.526322E-7 2.0 -5.9604645E-8 2.9999826 -4.7709625E-7 4.0 2.3841858E-7 5.000017 1.9301845E-7 6.0 1.7881393E-7 7.000017 -6.554011E-7
元のデータがほとんど完全な形で復元に成功しています。
Copyright 2018-2019, by Masaki Komatsu